Abstract

Alkali-activated cementitious material (AACM) based on the utilization of solid waste is a new type of environmentally friendly inorganic material, which has the advantages of early strength, fast hardening, high strength, and better durability. The reactivity of solid waste powder is a key factor for its appropriate utilization in alkali-activated cementitious materials, necessitating a rational evaluation of its reactivity. The reactivity evaluation was conducted on various solid waste powders, including fly ash (FA), red mud (RM), recycled micro-powder (RMP), red brick powder (RBP), coal gangue powder (CGP), and cement kiln dust (CKD). The effects of NaOH concentration, weight ratio of water to solid waste powder (W/P) and curing humidity on the compressive strength were investigated,then the compressive strength under optimal conditions was determined based on response surface analysis. The compressive strength under optimal conditions was used to evaluate the reactivity of solid waste powders. Moreover, microscopic tests (e.g., XPS test, ICP test, and NMR test) were carried to evaluate the reactivity of the solid waste. The relative number of bridging oxygen (RBO) measured by the NMR method in conjunction with chemical composition analysis serves as an effective method for evaluating the reactivity of solid waste powders. The leaching rate of Silicon (Si) and Aluminum (Al) ions in the ICP method depended mainly on the NaOH concentration and the elemental content in the raw material. In addition, the binding energies of O1s, Si 2p, and Al 2p tested by the XPS method had no particular correlation with the compressive strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.