Abstract
Aiming at the problem that the existing human skeleton behavior recognition methods are insensitive to human local movements and show inaccurate recognition in distinguishing similar behaviors, a multi-scale spatio-temporal graph convolution method incorporating multi-granularity features is proposed for human behavior recognition. Firstly, a skeleton fine-grained partitioning strategy is proposed, which initializes the skeleton data into data streams of different granularities. An adaptive cross-scale feature fusion layer is designed using a normalized Gaussian function to perform feature fusion among different granularities, guiding the model to focus on discriminative feature representations among similar behaviors through fine-grained features. Secondly, a sparse multi-scale adjacency matrix is introduced to solve the bias weighting problem that amplifies the multi-scale spatial domain modeling process under multi-granularity conditions. Finally, an end-to-end graph convolutional neural network is constructed to improve the feature expression ability of spatio-temporal receptive field information and enhance the robustness of recognition between similar behaviors. The feasibility of the proposed algorithm was verified on the public behavior recognition dataset MSR Action 3D, with a accuracy of 95.67%, which is superior to existing behavior recognition methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have