Abstract

This study focuses on a renewable energy power plant equipped with electrolytic hydrogen production system, aiming to optimize energy management to smooth renewable energy generation fluctuations, participate in peak shaving auxiliary services, and increase the absorption space for renewable energy. A multi-objective energy management model and corresponding algorithms were developed, incorporating considerations of cost, pricing, and the operational constraints of a renewable energy generating unit and electrolytic hydrogen production system. By introducing uncertain programming, the uncertainty issues associated with renewable energy output were successfully addressed and an improved particle swarm optimization algorithm was employed for solving. A simulation system established on the Matlab platform verified the effectiveness of the model and algorithms, demonstrating that this approach can effectively meet the demands of the electricity market while enhancing the utilization rate of renewable energies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call