Abstract
The implication of nano-additives in drilling fluids introduces a promising avenue for enhancing sustainability in the oil and gas industry. By upgrading the properties of drilling fluids, nano-additives can contribute to mitigating the drilling costs, improving wellbore stability, and minimizing the environmental impact. For example, the use of nano-additives can diminish the amount of drilling fluid required, thus reducing the volume of waste generated. Also, nano-additives can enhance the efficacy of drilling operations, leading to reduced energy consumption and greenhouse gas emissions. This review researches the potential of nano-additives in enhancing sustainable drilling practices, emphasizing the environmental advantages and economic advantages associated with their usage. Specifically, this comprehensive review will elucidate the most recent developments in drilling fluids by evaluating the impact of nano-additives. Referring to the conclusions, adding nanoparticles to drilling fluids significantly improves their characteristics. At 0.2 parts per billion (ppb), for example, the yield stress increases by 36% and the plastic viscosity increases by 17%. In addition, the inclusion of nanoparticles at a concentration of 0.6 ppb led to a significant decrease of 60% in the loss of filtrate. The measured enhancements highlight the capacity of nano-additives to augment the properties of drilling fluid, necessitating additional investigation into their prospective applications for enhancing competitiveness in the gas and oil industry. This study methodically examines the effects of these breakthroughs on scientific, commercial, and industrial sectors. It intends to provide an inclusive understanding of the possible advantages of nano-additives in drilling operations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.