Abstract
The acoustic cavity resonance inside the tire–wheel assembly is known to contribute to audible noise in the passenger compartment of vehicles. To obtain control methods of tire acoustic cavity resonance, its characteristics and producing mechanism need to be clarified first. In this article, the finite element model of a tire coupled with acoustic medium in the tire cavity is constructed. The Euler method is introduced to study the modal characteristics of tire cavity under the influence of tire inflation pressure, load, and tire rotation velocity. Frequency splitting phenomena under four separate conditions (stationary tire without load, stationary tire with load, rotating tire without load, and rotating tire with load) are simulated and analyzed. The slope change of the resonance frequency as a function of rotation speed is found to be close to the reciprocal of tire radius which can be explained by a model of wave propagation in a ring-shaped channel with moving media inside the ring. The obtained function of the slope change can help determine the frequency variation range under different vehicle velocity, structure load, and tire inflation pressure, which can then help to control the cavity resonance energy and provide a more comfortable driving experience.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.