Abstract

AbstractFatigue crack propagation (FCP) behaviour of 4003 ferritic stainless steel was investigated using infrared thermography. Four stages of superficial temperature evolution were observed during the FCP tests: an initial temperature decrease stage, a temperature equilibrium stage, a slow temperature increase stage and an abrupt temperature increase stage; a thermal model is developed to explain the observed temperature evolution. The experimental results indicate that: when the range of stress intensity factor (ΔK) is at a low level where the crack is located in slow propagation region, thermoelastic effect will be in dominant status; when the ΔKis at a high level where the crack is located in stable propagation region, the temperature rise can be used to describe FCP rate. The fatigue fracture surfaces were examined using scanning electron microscope (SEM) in order to understand the effect of the fatigue mechanisms on temperature variation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.