Abstract
In the transportation process of a three-dimensional double-pendulum overhead crane, the system is significantly influenced by the pronounced coupling introduced by the double-pendulum effect, posing a considerable challenge for the development of effective anti-swing control strategies. Moreover, uncertainties in certain system parameters and errors in trolley positioning contribute to the complexity of anti-swing control strategy design. To address these practical issues, a control strategy is proposed: First, an S-shaped transport trajectory with minimal positioning error is introduced, incorporating more system parameters into the coupling signal design to enhance system coupling. Based on this, an error-coupled trajectory signal is introduced. Second, the error-coupled trajectory signal is integrated into the energy function, and leveraging adaptive principles, an adaptive coupled trajectory tracking anti-swing control strategy is proposed to estimate uncertain system parameters online. Subsequently, the asymptotic stability of the equilibrium point of the closed-loop system is verified using the Lyapunov techniques and the Barbalat lemma. Finally, through simulations and experiments, it is demonstrated that the proposed control strategy not only ensures precise positioning of the trolley and bridge but also effectively suppresses oscillations of the hook and load, exhibiting excellent control performance. Even in scenarios where system parameters undergo changes or external disturbances are introduced, the proposed control strategy exhibits strong robustness and holds significant practical potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of the Institute of Measurement and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.