Abstract

In a practical application, overhead cranes are usually subjected to system parameter uncertainties, such as uncertain payload masses, cable lengths, frictions, and external disturbances, such as air resistance. Most existing crane control methods treat the payload swing as that of a single-pendulum. However, certain types of payloads and hoisting mechanisms result in double-pendulum dynamics. The double-pendulum effects will make most existing crane control methods fail to work normally. Therefore, an adaptive tracking controller for double-pendulum overhead cranes subject to parametric uncertainties and external disturbances is developed in this paper. The proposed adaptive tracking control method guarantees that the trolley tracking error is always within a prior set of boundary conditions and converges to zero rapidly. The asymptotic stability of the closed-loop system׳s equilibrium point is assured by Lyapunov techniques and Barbalat׳s Lemma. Simulation results show that the proposed adaptive tracking control method is robust with respect to system parametric uncertainties and external disturbances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.