Abstract
Previously, we demonstrated that the expression of myogenin, a critical transcription factor for myogenesis, is negatively regulated by O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation in mouse C2C12 cells. In this study, we found that Mef2 family proteins, especially Mef2D which is a crucial transcriptional activator of myogenin, are O-GlcNAc glycosylated. Between the two splice variants of Mef2D, Mef2D1a rather than Mef2D1b appears to drive the initiation of myogenin expression in the early stage of myogenesis. A deletion mutant analysis showed that Mef2D1a is glycosylated both in its DNA-binding and transactivation domains. A significant decrease in the glycosylation of Mef2D was observed in response to myogenic stimulus in C2C12 cells. Inhibition of the myogenesis-dependent decrease in the glycosylation of Mef2D suppressed its recruitment to the myogenin promoter. These results indicate that the expression of myogenin is regulated, at least in part, by the decreased glycosylation-dependent recruitment of Mef2D to the promoter region, and this is one of the negative regulatory mechanisms of skeletal myogenesis by O-GlcNAc glycosylation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.