Abstract

The fusogenic subgroup of orthoreoviruses contains most of the few known examples of non-enveloped viruses capable of inducing syncytium formation. The only unclassified orthoreoviruses at the species level represent several fusogenic reptilian isolates. To clarify the relationship of reptilian reoviruses (RRV) to the existing fusogenic and nonfusogenic orthoreovirus species, we undertook a characterization of a python reovirus isolate. Biochemical, biophysical, and biological analyses confirmed the designation of this reptilian reovirus (RRV) isolate as an unclassified fusogenic orthoreovirus. Sequence analysis revealed that the RRV S1 and S3 genome segments contain a novel conserved 5′-terminal sequence not found in other orthoreovirus species. In addition, the gene arrangement and the coding potential of the bicistronic RRV S1 genome segment differ from that of established orthoreovirus species, encoding a predicted homologue of the reovirus cell attachment protein and a unique 125 residue p14 protein. The RRV S3 genome segment encodes a homologue of the reovirus sigma-class major outer capsid protein, although it is highly diverged from that of other orthoreovirus species (amino acid identities of only 16–25%). Based on sequence analysis, biological properties, and phylogenetic analysis, we propose this python reovirus be designated as the prototype strain of a fifth species of orthoreoviruses, the reptilian reoviruses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call