Abstract

We report on the isolation of a novel fusogenic orthoreovirus from bat flies (Eucampsipoda africana) associated with Egyptian fruit bats (Rousettus aegyptiacus) collected in South Africa. Complete sequences of the ten dsRNA genome segments of the virus, tentatively named Mahlapitsi virus (MAHLV), were determined. Phylogenetic analysis places this virus into a distinct clade with Baboon orthoreovirus, Bush viper reovirus and the bat-associated Broome virus. All genome segments of MAHLV contain a 5' terminal sequence (5'-GGUCA) that is unique to all currently described viruses of the genus. The smallest genome segment is bicistronic encoding for a 14 kDa protein similar to p14 membrane fusion protein of Bush viper reovirus and an 18 kDa protein similar to p16 non-structural protein of Baboon orthoreovirus. This is the first report on isolation of an orthoreovirus from an arthropod host associated with bats, and phylogenetic and sequence data suggests that MAHLV constitutes a new species within the Orthoreovirus genus.

Highlights

  • Bats have been increasingly associated with emerging and re-emerging viruses

  • Rousettus aegyptiacus bats were sampled on a monthly basis from March 2013 until March 2014 at Mahune Cave in the Mahlapitsi Valley, Limpopo province, South Africa, using standard trapping procedures [35] as part of a surveillance project of zoonotic pathogens harboured by South African bats

  • Taking the abovementioned criteria and the sequence characteristics of the novel virus described here into consideration, we propose that Mahlapitsi virus constitutes a new species within the Orthoreovirus genus

Read more

Summary

Introduction

Bats have been increasingly associated with emerging and re-emerging viruses. The likelihood of possible transmission of these pathogens to humans is ever increasing as a result of human encroachment on animal habitats, climate change and change of human behaviour. Without a known human disease link, have been detected recently [9,10,11]. Some human pathogens, such as Rift Valley fever virus, that have been detected in bats were likely a result of coincidental infection and do not constitute proof that bats play a role as reservoirs [12]. The bat flies are members of two families in the Diptera order, namely, the Streblidae and Nycteribiidae, and are highly host-specific obligate ectoparasites of bats [13,14,15]. Both bat fly families are hematophagous and potentially capable of Viruses 2016, 8, 65; doi:10.3390/v8030065 www.mdpi.com/journal/viruses

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.