Abstract

Anticoagulant rodenticides have been widely used to eliminate wild rodents, which as invasive species on remote islands can disturb ecosystems. Since rodenticides can cause wildlife poisoning, it is necessary to evaluate the sensitivity of local mammals and birds to the poisons to ensure the rodenticides are used effectively. The Bonin Islands are an archipelago located 1000 km southeast of the Japanese mainland and are famous for the unique ecosystems. Here the first-generation anticoagulant rodenticide diphacinone has been used against introduced black rats (Rattus rattus). The only land mammal native to the archipelago is the Bonin fruit bat (Pteropus pselaphon), but little is known regarding its sensitivity to rodenticides. In this study, the Egyptian fruit bats (Rousettus aegyptiacus) was used as a model animal for in vivo pharmacokinetics and pharmacodynamics analysis and in vitro enzyme kinetics using their hepatic microsomal fractions. The structure of vitamin K epoxide reductase (VKORC1), the target protein of the rodenticide in the Bonin fruit bat, was predicted from its genome and its binding affinity to rodenticides was evaluated. The Egyptian fruit bats excreted diphacinone slowly and showed similar sensitivity to rats. In contrast, they excreted warfarin, another first-generation rodenticide, faster than rats and recovered from the toxic effect faster. An in silico binding study also indicated that the VKORC1 of fruit bats is relatively tolerant to warfarin, but binds strongly to diphacinone. These results suggest that even chemicals with the same mode of action display different sensitivities in different species: fruit bat species are relatively resistant to warfarin, but vulnerable to diphacinone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.