Abstract
Reproducing kernel Hilbert space (RKHS) methods have become powerful tools in machine learning. However, their kernels, which measure similarity of inputs, are required to be symmetric, constraining certain applications in practice. Furthermore, the celebrated representer theorem only applies to regularizers induced by the norm of an RKHS. To remove these limitations, we introduce the notion of reproducing kernel Banach spaces (RKBS) for pairs of reflexive Banach spaces of functions by making use of semi-inner-products and the duality mapping. As applications, we develop the framework of RKBS standard learning schemes including minimal norm interpolation, regularization network, and support vector machines. In particular, existence, uniqueness and representer theorems are established.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have