Abstract
Reproducing kernel Hilbert space (RKHS) methods have become powerful tools in machine learning. However, their kernels, which measure similarity of inputs, are required to be symmetric, constraining certain applications in practice. Furthermore, the celebrated representer theorem only applies to regularizers induced by the norm of an RKHS. To remove these limitations, we introduce the notion of reproducing kernel Banach spaces (RKBS) for pairs of reflexive Banach spaces of functions by making use of semi-inner-products and the duality mapping. As applications, we develop the framework of RKBS standard learning schemes including minimal norm interpolation, regularization network, and support vector machines. In particular, existence, uniqueness and representer theorems are established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.