Abstract
Accurate short term load forecasting plays a very important role in power system management. As electrical load data is highly non-linear in nature, in the proposed approach, we first use a Reproducing Kernel Hilbert Space (RKHS) method to fit the data. Afterwards a template is constructed based on the input-output data and the results from the RKHS method. To predict the load, only the template is used with no additional RKHS calculations. The proposed method is compared to a Support Vector Machine (SVM) prediction. Results show that the proposed method predicts much more accurate than the SVM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.