Abstract

Phosphate uptake by brush-border membrane (BBM) vesicles prepared from hypophosphatemic mice (Hyp) is reduced by half relative to BBM vesicles from normal mice. To investigate this abnormality, we studied the protein composition of BBM, their capacity to bind inorganic phosphate, and their protein kinase activity with and without the addition of exogenous cAMP, in normal and Hyp mice. Gradient polyacrylamide gel electrophoresis of BBM proteins showed 27 bands which were identical in normal and Hyp mice. Incubation of the membranes with ortho[32P]phosphate at 0 degrees C revealed a phosphate binding protein with an apparent molecular weight (Mr) of 79000, which has been previously identified in rats as the monomer of alkaline phosphatase. In normal mice, the Scatchard plot of phosphate binding was not linear, suggesting heterogeneity of the binding sites with two major components. At high substrate concentrations, the affinity (K) was 1.42 mM and maximal binding (Bmax) was 83 pmol/mg protein. At low substrate concentrations, these values were 0.07 mM and 10.9 pmol/mg, respectively. In Hyp mice BBM, only one binding system was found with K and Bmax values of 0.38 mM and 53.8 pmol/mg. Incubation of the membranes with 25 microM[gamma-32P]ATP resulted in the phosphorylation of 11 proteins. The major band (Mr: 79000) corresponded to the inorganic phosphate binding protein, i.e., to the alkaline-phosphatase monomer. The 11 proteins showed maximal phosphorylation at pH 10. The protein of 79000 Mr showed a second peak of phosphorylation at pH 7.5.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.