Abstract

The X-linked hypophosphatemic (Hyp) mouse is a model for hypophosphatemic vitamin D-resistant rickets and is a homologue of human X-linked hypophosphatemia. The defect in the Hyp mouse appears to be related to decreased renal tubular reabsorption of P(i) via the renal brush-border membrane (Na(+)-P(i)) transporter. Dietary P(i) deprivation upregulates Na(+)-P(i) transport activity in brush-border membrane vesicles (BBMV) isolated from both normal and Hyp mice; however, the molecular mechanisms underlying this phenomenon are not known. The current studies were designed to investigate the effect of P(i) deprivation on the renal Na(+)-P(i) transporter. Low P(i) diet upregulated Na(+)-P(i) transporter activity in isolated BBMV by 2.1-fold in normal and Hyp mice (n = 3, P = 0.01). Low P(i) diet also induced a 1.9 +/- 0.3-fold increase in normal mice and 2.9 +/- 0.4-fold increase in Hyp mice in Na(+)-P(i) transporter message levels (n = 3, P = 0.028). The increase in message level encoding the Na(+)-P(i) transporter stimulated increased Na(+)-dependent P(i) uptake by Xenopus laevis oocytes when poly(A)+ RNA was injected into them from mice on low P(i) diet (approximately 1.67-fold in normal mice and 1.33-fold in Hyp mice). Immunoreactive protein levels increased 2.3 +/- 0.4-fold in normal mice and 8.2 +/- 0.5 in the Hyp mouse kidney cortexes (n = 3, P = 0.0001) in response to dietary P(i) deprivation.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.