Abstract
In recent decades, the pollution of water with micropollutants has become an increasing environmental concern. Since 2019, increased stormwater pollution from chlorine-based disinfectants has been recorded due to the COVID-19 pandemic. Runoff from disinfected areas and the residual chlorine present in stormwater are transported to surface water bodies, posing a risk to aquatic flora and fauna. The objectives of this study were (1) to evaluate the efficiency of different low-cost and recyclable filter materials in removing residual chlorine, and (2) to test plants’ ability to reduce residual chlorine concentrations through phytoremediation. Experiments were conducted in the laboratory (column and batch) and in the field (raised garden bed) to assess the efficiency of various filter materials (peat, wood chips, sawdust and the lightweight aggregates) in retaining residual chlorine to be implemented in green infrastructure. The best retainers of chlorine were sawdust (96%) and the LWA Leca (76%). No harmful effects of residual chlorine (changes in growth, color, leaf size, etc.) on plants (Tagetes patula or Pisum savitum) were observed and the residual chlorine in the leachate samples was below the equipment’s detection limit. Our research results will contribute to future studies aiming to remove various micropollutants from stormwater using remediation technologies.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have