Abstract

In this Letter we suggest a method to observe remote interactions of spatially separated dipolar quantum fluids, and in particular, of dipolar excitons in GaAs bilayer based devices. The method utilizes the static electric dipole moment of trapped dipolar fluids to induce a local potential change on spatially separated test dipoles. We show that such an interaction can be used for model-independent, objective fluid density measurements, an outstanding problem in this field of research, as well as for interfluid exciton flow control and trapping. For a demonstration of the effects on realistic devices, we use a full two-dimensional hydrodynamical model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.