Abstract

Lithium-ion batteries are widely utilized in various fields, including aerospace, new energy vehicles, energy storage systems, medical equipment, and security equipment, due to their high energy density, extended lifespan, and lightweight design. Precisely predicting the remaining useful life (RUL) of lithium batteries is crucial for ensuring the safe use of a device. In order to solve the problems of unstable prediction accuracy and difficultly modeling lithium-ion battery RUL with previous methods, this paper combines a channel attention (CA) mechanism and long short-term memory networks (LSTM) to propose a new hybrid CA-LSTM lithium-ion battery RUL prediction model. By incorporating a CA mechanism, the utilization of local features in situations where data are limited can be improved. Additionally, the CA mechanism can effectively mitigate the impact of battery capacity rebound on the model during lithium-ion battery charging and discharging cycles. In order to ensure the full validity of the experiments, this paper utilized the National Aeronautics and Space Administration (NASA) and the University of Maryland Center for Advanced Life Cycle Engineering (CALCE) lithium-ion battery datasets and different prediction starting points for model validation. The experimental results demonstrated that the hybrid CA-LSTM lithium-ion battery RUL prediction model proposed in this paper exhibited a strong predictive performance and was minimally influenced by the prediction starting point.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call