Abstract

It is imperative to accurately predict the remaining useful life (RUL) of lithium-ion batteries to ensure the reliability and safety of related industries and facilities. In view of the noise sequence embedded in the measured aging data of lithium-ion batteries and the strong nonlinear characteristics of the aging process, this study proposes a method for predicting lithium-ion batteries’ RUL based on the wavelet threshold denoising and transformer model. To specify, firstly, the wavelet threshold denoising method is adopted to preprocess the measured discharging capacity data of lithium-ion batteries to eliminate some noise signals. Second, based on the denoised data, the transformer model output’s full connection layer is applied to replace the decoder layer for establishing the RUL prediction model of lithium-ion batteries. Finally, the discharging capacity of each charging–discharging cycle is predicted iteratively, and then the RUL of lithium-ion batteries can be calculated eventually. Two groups of lithium-ion batteries’ aging data from the Center for Advanced Life Cycle Engineering (CALCE) at the University of Maryland and the laboratory at Anqing Normal University (AQNU) are employed to verify the proposed method, individually. The experimental results demonstrate that this method can overcome the impacts of data measurement noise, effectively predict the RUL of lithium-ion batteries, and present a sound generalization ability and high accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.