Abstract

In this work, the mean field (MF) method, a continuum-based model designed for treating complex molecular systems, such as liquids and solutions, recently presented by Brancato et al. [J. Chem. Phys. 122, 154109 (2005)], has been further developed and improved especially in the treatment of the electrostatics. The revised model has been used to investigate the size effects on several physical properties of various solute-solvent systems by increasing the number of explicitly included solvent molecules from few tens up to thousands. Results on simple ions, such as sodium and chloride ions, and on a small peptide, such as alanine dipeptide analog (AcAlaNHMe), have shown that solvation structures and dynamics, as well as solvent-induced changes in the solute conformation, can be correctly reproduced by the MF model, providing that only two or three solvent layers are treated explicitly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.