Abstract
AbstractProbabilistic cellular automata form a very large and general class of stochastic processes. These automata exhibit a wide range of complex behavior and are of interest in a number of fields of study, including mathematical physics, percolation theory, computer science, and neurobiology. Very little has been proved about these models, even in simple cases, so it is common to compare the models to mean field models. It is normally assumed that mean field models are essentially trivial. However, we show here that even the mean field models can exhibit surprising behavior. We prove some rigorous results on mean field models, including the existence of a surrogate for the “energy” in certain non‐reversible models. We also briefly discuss some differences that occur between the mean field and lattice models. © 2006 Wiley Periodicals, Inc. Random Struct. Alg., 2006
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.