Abstract

Aqueous zinc ion batteries (AZIBs) are the promising candidate for energy storage where safety and low cost are the major concerns. However, the uneven and random electrodeposition of Zn has become a serious impediment to the deep recharging of AZIBs. Conventional modifications on zinc substrate can promote homogenous zinc deposition initially, but not sustainably. Here, an oxidized polyacrylonitrile (OPAN) membrane with a conjugated planar structure is proposed as a zinc ion battery separator. This separator can continuously regulate the growth of Zn with (002) texture to inhibit dendrites. In addition, the separator has a fast Zn2+ ion transfer, which can spontaneously repel SO42- and relieve side reactions. As a result, the Zn-symmetric batteries show cycle lifetime of more than 1300 hours at 1 mA cm-2 and 1 mA h cm-2, and kept stable for more than 160 hours even at 65% high discharge of depth (DOD). The MnO2//Zn full celled assembled with an OPAN separator had very little decay for 5000 cycles at 2 A g-1. This work provides a new method for realizing the continuous and uniform deposition of Zn metals, which also provides a new route for batteries with metallic anodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.