Abstract
This article mainly reviews the energy storage mechanisms and research progress of vanadium-based and manganese-based cathode materials in aqueous ZIBs. The growing demand for energy storage has inspired researchers’ exploration of advanced batteries. Aqueous zinc ion batteries (ZIBs) are promising secondary chemical battery system that can be selected and pursued. Rechargeable ZIBs possess merits of high security, low cost, environmental friendliness, and competitive performance, and they are received a lot of attention. However, the development of suitable zinc ion intercalation-type cathode materials is still a big challenge, resulting in failing to meet the commercial needs of ZIBs. Both vanadium-based and manganese-based compounds are representative of the most advanced and most widely used rechargeable ZIBs electrodes. The valence state of vanadium is +2 ~ +5, which can realize multi-electron transfer in the redox reaction and has a high specific capacity. Most of the manganese-based compounds have tunnel structure or three-dimensional space frame, with enough space to accommodate zinc ions. In order to understand the energy storage mechanism and electrochemical performance of these two materials, a specialized review focusing on state-of-the-art developments is needed. This review offers access for researchers to keep abreast of the research progress of cathode materials for ZIBs. The latest advanced researches in vanadium-based and manganese-based cathode materials applied in aqueous ZIBs are highlighted. This article will provide useful guidance for future studies on cathode materials and aqueous ZIBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.