Abstract

To tackle energy crisis and achieve sustainable development, aqueous rechargeable zinc ion batteries have gained widespread attention in large-scale energy storage for their low cost, high safety, high theoretical capacity, and environmental compatibility in recent years. However, zinc anode in aqueous zinc ion batteries is still facing several challenges such as dendrite growth and side reactions (e.g., hydrogen evolution), which cause poor reversibility and the failure of batteries. To address these issues, interfacial modification of Zn anodes has received great attention by tuning the interaction between the anode and the electrolyte. Herein, we present recent advances in the interfacial modification of zinc anode in this review. Besides, the challenges of reported approaches of interfacial modification are also discussed. Finally, we provide an outlook for the exploration of novel zinc anode for aqueous zinc ion batteries. We hope that this review will be helpful in designing and fabricating dendrite-free and hydrogen-evolution-free Zn anodes and promoting the practical application of aqueous rechargeable zinc ion batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call