Abstract
The interfacial reactions between two Sn-Cu (Sn-0.7Cu and Sn-3Cu, wt.%) ball-grid-array (BGA) solders and the Au/Ni/Cu substrate by solid-state isothermal aging were examined at temperatures between 70°C and 170°C for 0 to 100 days. For the Sn-0.7Cu solder, a (Cu,Ni)6Sn5 layer was observed in the samples aged at 70–150°C. After isothermal aging at 170°C for 50 days, the solder/Ni interface exhibited a duplex structure of (Cu,Ni)6Sn5 and (Ni,Cu)3Sn4. For the Sn-3Cu solder, only the (Cu,Ni)6Sn5 layer was formed in all aged samples. Compared to these two Sn-Cu solders, the Cu content in the (Cu,Ni)6Sn5 layer formed at the interface increased with the Cu concentration in the Sn-xCu solders. And, the shear strength was measured to evaluate the effect of the interfacial reactions on the mechanical reliability as a function of aging conditions. The shear strength significantly decreased after aging for 1 day and then remained nearly unchanged by further prolonged aging. In all the samples, the fracture always occurred in the bulk solder. Also, we studied the electrical property of Cu/Sn-3Cu/Cu BGA packages with the number of reflows. The electrical resistivity increased with the number of reflows because of an increase of intermetallic compound (IMC) thickness.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have