Abstract

Conventional copper conductor suffered from electromigration induced by high current density. This calls for a more reliable conductive material. Carbon nanotubes (CNTs), with excellent electrical properties and extremely high thermal conductivity, have been suggested for future interconnects. Although different integration schemes have been demonstrated for CNT interconnects, the reliability of CNT interconnects in the silicon CMOS environment has not been evaluated. The purpose of this study is to investigate the reliability of CNT interconnect under electrical and thermal stress. We first studied the electrical properties of a single CNT exposed in air. It was found that CNT did not fail in the continuous, accelerating manner typical of electromigration failure. An abrupt decrease of conductance was observed when certain level power is supplied. This possibly is caused by the oxidation of the CNT outer shell by Joule heating in air. We then fabricated another CNT via test structure. The reliability of the new test structure is improved due to the heat-sinking effect of surrounding dielectrics. But still the CNT interconnect in the new test structure failed when additional thermal stress is applied. By filling the voids between CNTs with copper, the CNT interconnect becomes more reliable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.