Abstract
The use of BGA (Ball Grid Array) interconnects utilizing the lead-free solder joint has grown rapidly because of its small volume and diversity of application. Thus, it requires the continuous quantification and refinement of lead-free solder joint reliability. The lead-free solder creep and cyclically applied mechanical loads cause metal fatigue on the lead-free solder joint which inevitably leads to an electrical discontinuity. In the field application, BGA solder joints experience mechanical loads during temperature changes caused by power up/down events as the result of the CTE (Coefficient of Thermal Expansion) mismatch between the substrate and the Si die. In this paper, extremely small resistance changes at joint area corresponding to through-cracks generated by thermal fatigue were measured. In this way, the failure was defined in terms of anomalous changes in electrical resistance of the joint. Furthermore the reliability of BGA solder joints in thermal cycling is evaluated by using the modified coffin-Manson criterion which may define and distinguish failure. Any change in circuit resistance according to the accumulated damage induced by the thermal cycling in the joint was recorded and evaluated in order to quantitate reliability of solder joint.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.