Abstract

Abstract Nitrogen-containing organic compounds and nitrogenous disinfection by-products (N-DBPs) in drinking water have attracted attention in the field of water treatment. Metabolites released during algae growth contain a variety of organic nitrogen species, which are called N-DBP precursors. The aim of this paper is to elucidate how N-DBP precursors are released under UV radiation, as well as investigate the variations of their chemical properties. The results show that through UV radiation, the physiological metabolism of algal cells was disordered and the properties of their metabolites were changed. The dissolved organic nitrogen (DON) compound concentration increased rapidly from 5.38 at the beginning to 11.11 mg/L after 30 min of radiation, and then increased steadily from 11.11 to 23.71 mg/L during a further 210 min of radiation. Derivation results of the curves for algae and DON concentration variations shows that when 1 × 1010 algal cells were destroyed, 8.31 mg DON was released into the solution during the first 30 min of radiation. Low dose UV radiation brought a slight decline of the specific N-DBP formation potential due to changes in the extracellular organic matter (EOM) structure without destroying the algal cells, which was conducive to controlling the formation potential of N-DBPs. Long-time UV radiation can bring a significant increase in N-DBP formation potential. After 4 hours of ultraviolet radiation, the total formation potential of N-DBPs in the solution increased from about 84.9 μg/L to about 213.5 μg/L, 2.5 times higher than the initial solution. The N-DBP formation potential increases obviously during the first 10–30 min UV radiation, and then decreases slightly in the subsequent 30–240 min radiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.