Abstract
The increased mutagenicity of disinfection by‐products (DBPs) containing bromide (Br−) and nitrogen requires a renewed evaluation of best available treatment technologies for DBP control. The aim of this article is to document the removal of organic nitrogen during granular activated carbon (GAC) treatment and to illustrate how GAC treatment alters DBP speciation. Rapid small‐scale column tests (RSSCTs) with GAC were conducted on pretreated surface water sources to evaluate the simultaneous removal of carbonaceous and nitrogenous DBP precursors: dissolved organic nitrogen (DON), dissolved organic carbon (DOC), organics absorbed by ultraviolet light at 254 nm (UV254), and Br−. Simulated distribution system tests were conducted with RSSCT effluent samples throughout natural organic matter breakthrough, and free chlorine was used to evaluate the formation of halogenated carbonaceous and nitrogenous DBPs. GAC preferentially removed UV254‐absorbing material over DOC, which was removed more effectively than DON. Br− was not removed. Consequently, effluent ratios of Br− to DOC and Br− to DON changed during GAC treatment, and the ratio of brominated DBPs to chlorinated DBPs shifted during the GAC breakthrough cycle; brominated DBPs dominated earlier in the breakthrough of DOC. Neither DON nor nitrogenous DBP precursors were removed efficiently during GAC treatment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.