Abstract

The impregnation and elution of gentamicin antibiotic from a commercially available porous beta-tricalcium phosphate (TCP) bone implant material (Vitoss, Orthovita, Inc.) was investigated in vitro. Sustained local antibiotic release is an attractive method for the prevention of infection following surgery. The purpose of this study was to evaluate the use of the naturally forming clot that occurs within a porous tissue scaffold when combined with autologous blood or bone marrow aspirate (BMA) as a method for achieving controlled drug delivery. The diffusion of antibiotic from porous TCP scaffolds was studied using water, clotted blood, or BMA as impregnating fluids. Incorporation of the drug into the porous scaffold using clotted blood or BMA as a binder produced slowed release relative to aqueous impregnated and dried samples. Modifications were made to the elution method to simulate restricted diffusion due to surrounding clotted blood, tissue, or bone that would occur in vivo. These modified methods simulated release in a surgical site and showed long release profiles, with significant amounts of antibiotic being released for up to 2 weeks. We concluded that adding gentamicin with autologous BMA is a promising method of controlling drug release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.