Abstract
The long-time thermal relaxation of (TMTTF)$_2$Br, Sr$_{14}$Cu$_{24}$O$_{41}$ and Sr$_2$Ca$_{12}$Cu$_{24}$O$_{41}$ single crystals at temperatures below 1 K and magnetic field up to 10 T is investigated. The data allow us to determine the relaxation time spectrum of the low energy excitations caused by the charge-density wave (CDW) or spin-density wave (SDW). The relaxation time is mainly determined by a thermal activated process for all investigated materials. The maximum relaxation time increases with increasing magnetic field. The distribution of barrier heights corresponds to one or two Gaussian functions. The doping of Sr$_{14-x}$Ca$_{x}$Cu$_{24}$O$_{41}$ with Ca leads to a drastic shift of the relaxation time spectrum to longer time. The maximum relaxation time changes from 50 s (x = 0) to 3000 s (x = 12) at 0.1 K and 10 T. The observed thermal relaxation at x=12 clearly indicates the formation of the SDW ground state at low temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.