Abstract
The polarization reversal process of tetragonal Pb(Zr,Ti)O3 thin films has been intensively studied using conventional hysteresis and rectangle pulse measurements. Decreasing the voltage level of the pulses significantly slows down the polarization switching to the range of milliseconds. The switching current response shows a Curie–von Schweidler behavior over a broad time range. The transient current and the frequency dependence of the P–V loops of these films compared to the properties of ferroelectric single crystals show some similarities but also significant differences. The theoretical models of the classical ferroelectric phase transition and especially the conditions of the pulse measurements in single crystals and thin films are discussed. It leads to the conclusion that it is not the domain wall structure and domain wall motion that determine the polarization reversal but dissipative polarization processes which can take place in both ferroelectric and nonferroelectric high-k dielectric thin films.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.