Abstract

What guarantees the "peaceful coexistence" of quantum nonlocality and special relativity? The tension arises because entanglement leads to locally inexplicable correlations between distant events that have no absolute temporal order in relativistic spacetime. This paper identifies a relativistic consistency condition that is weaker than Bell locality but stronger than the no-signaling condition meant to exclude superluminal communication. While justifications for the no-signaling condition often rely on anthropocentric arguments, relativistic consistency is simply the requirement that joint outcome distributions for spacelike separated measurements (or measurement-like processes) must be independent of their temporal order. This is necessary to obtain consistent statistical predictions across different Lorentz frames. We first consider ideal quantum measurements, derive the relevant consistency condition on the level of probability distributions, and show that it implies no-signaling (but not vice versa). We then extend the results to general quantum operations and derive corresponding operator conditions. This will allow us to clarify the relationships between relativistic consistency, no-signaling, and local commutativity. We argue that relativistic consistency is the basic physical principle that ensures the compatibility of quantum statistics and relativistic spacetime structure, while no-signaling and local commutativity can be justified on this basis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.