Abstract

The influence of the microstructural evolution induced by increasing firing temperature on the change in dielectric properties induced by re-oxidation treatment in the Ba(Ti, Zr)O3(BTZ)-Ho-Mn system was investigated. The microstructural observation of as-fired disk samples revealed gradual grain growth with firing temperature. From the temperature characteristic (TC) measurement, the shift to higher temperatures of dielectric maximum (Tmax) due to re-oxidation treatment became larger with grain growth although the chemical compositions were quite the same. It was found that grain growth accelerated the valence change of Mn by re-oxidation treatment and the substitution of dopants in a grain in this system. Microstructural evolutions, such as compositional distribution and the concentration of additives in a grain, had an influence on the changes in dielectric properties induced by re-oxidation treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.