Abstract

Plain pottery excavated from the Tang Dynasty tomb of Liu Jing was taken as the research object. The color, chemical composition, microstructure, and phase were tested to investigate the influencing factors of color for plain pottery fragments. The results indicated that the contents of Fe2O3 and TiO2 in all fragments varied little, and the influence of humic acids in clay as well as the firing atmosphere on the appearance color of plain pottery was excluded. Therefore, the main factor affecting color saturation (C*) was identified as the firing temperature (T). More importantly, the correlation between C* and firing temperature was established by replicas fired at different temperatures. Before the appearance of the glass phase, iron-containing minerals played a major role in coloring, and after that, iron ions in the glass phase and iron crystallization rose the important function of coloring. Consequently, with the increase of firing temperature, C* value increased firstly and then decreased. The inflection point of the fitted C* − T curve corresponded to the glass phase formation temperature. By comparing the estimated firing temperatures obtained by the fitted C* − T correlation curve with the known firing temperature of replicas, it was demonstrated that the color measurement is an ideal method for deducing the firing temperatures of ancient plain pottery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call