Abstract
Anterior cruciate ligament injuries are directly related to the control of dynamic knee valgus in the landing of a jump, and this is mainly due to the correct activation and neuromuscular function of the lower-extremity muscles. The aim of the study is to assess the relationship between lower limb muscle activity during a single-legged drop jump and knee frontal plane projection angle (FPPA). A correlation study. Thirty healthy collegiate female athletes were included in the study. Main outcomes measures were peak knee FPPA and muscle activity (% of maximal voluntary isometric contraction). Peak knee FPPA during a single-legged drop jump test was identified using a 2-dimensional motion analysis system. Muscle activity was assessed using a surface electromyograph for gluteus maximus, gluteus medius, biceps femoris, semitendinosus, vastus medialis quadriceps, vastus lateralis quadriceps, medial gastrocnemius, and lateral gastrocnemius. All variables were assessed for both dominant and nondominant limbs. A correlation analysis between peak knee FPPA and muscle activity was performed. Statistical significance was set at P <.05. A mean peak knee FPPA of 14.52° and 13.38° was identified for dominant and nondominant limb single-legged drop jump test, respectively. Muscle activity (% of maximal voluntary isometric contraction) for muscles assessed ranged from 43.97% to 195.71% during the single-legged drop jump test. The correlation analysis found no significant correlation between any of the muscles assessed and peak knee FPPA during the single-legged drop jump test (Pearson coefficient between -.3 and .1). There is no association between muscle activity from the lower limb muscles and the knee FPPA during a single-legged drop jump in female athletes. Thus, different muscle properties should be assessed in order to understand such an important movement as the knee FPPA during a jump.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.