Abstract

Young, adolescent female athletes are at particular high risk of sustaining a non-contact anterior cruciate ligament (ACL) injury during sport. Through the last decades much attention has been directed toward various anatomical and biomechanical risk factors for non-contact ACL injury, and important information have been retrieved about the influence of external loading factors on ACL injury risk during given sports-specific movements. However, much less attention has been given to the aspect of neuromuscular control during such movements and only sparse knowledge exists on the specific muscle activation patterns involved during specific risk conditions. Therefore, the aim of this narrative review was (1) to describe anatomical aspects, strength aspects and biomechanical aspects relevant for the understanding of ACL non-contact injury mechanisms in young female athletes, and (2) to review the existing literature on lower limb muscle activation in relation to risk of non-contact ACL-injury and prevention of ACL injury in young female athletes. Studies investigating muscle activity patterns associated with sports-specific risk situations were identified, comprising cohort studies, intervention studies and prospective studies. Based on the retrieved studies, clear gender-specific differences in muscle activation and coordination were identified demonstrating elevated quadriceps activity and reduced hamstring activity in young female athletes compared to their male counterparts, and suggesting young female athletes to be at elevated risk of non-contact ACL injury. Only few studies (n = 6) examined the effect of preventive exercise-based intervention protocols on lower limb muscle activation during sports-specific movements. A general trend toward enhanced hamstring activation was observed during selected injury risk situations (e.g., sidecutting and drop landings). Only a single study examined the association between muscle activation deficits and ACL injury risk, reporting that low medial hamstring activation and high vastus lateralis activation prior to landing was associated with an elevated incidence of ACL-injury. A majority of studies were performed in adult female athletes. The striking paucity of studies in adolescent female athletes emphasizes the need for increased research activities to examine of lower limb muscle activity in relation to non-contact ACL injury in this high-risk athlete population.

Highlights

  • Acute knee injury, especially injury to the anterior cruciate ligament (ACL), represents a serious problem in ball sports and racket sports that involve abrupt changes of direction, i.e., landing, turning, and sidecutting (Myklebust et al, 1997; Faude et al, 2006; Beynnon et al, 2014; Pasanen et al, 2017)

  • The available data suggests that selected biomechanical risk factors such as anterior shear forces, external knee abduction moments and internal/external knee joint rotation (Figure 1) – all factors known to stress the ACL during injury risk situations like landings and sidecutting – may be significantly counteracted by internal joint forces generated by the hamstring muscles

  • Increased hamstring muscle activation and reduced quadriceps activation both would be expected to counteract the magnitude of anterior tibial shear forces, and elevated activation of the medial hamstring muscles (ST in particular) without or in combination with reduced activity in the lateral quadriceps muscle (VL) is expected to counteract external knee abduction moments in the frontal plane that are known to represent a strong risk factor for non-contact ACL injury

Read more

Summary

INTRODUCTION

Especially injury to the anterior cruciate ligament (ACL), represents a serious problem in ball sports and racket sports that involve abrupt changes of direction, i.e., landing, turning, and sidecutting (Myklebust et al, 1997; Faude et al, 2006; Beynnon et al, 2014; Pasanen et al, 2017). Analyzing the magnitude and timing of biomechanical loading on the knee joint and the ACL during such risk situations and their relationship to age or gender would help to improve our understanding of which muscle groups that need to be strong and/or highly active during specific injury risk situation in order to reduce the risk of non-contact ACL injury in young female athletes. The findings and conclusions of this review are expected to help health care professionals including physiotherapists and exercise physiologists, coaches and physical trainers to design and implement more efficient and varied exercise programs for ACL injury prevention in young female athletes

Anatomical Aspects
Muscle Strength Aspects
Biomechanical Aspects
Muscle Activation
Results
University athletes
Sidecut and drop landing quadriceps and hamstring EMG
Sidecutting EMG of quadriceps and hamstrings
Sidecutting EMG of hip thigh and shank muscles
SUMMARY AND PERSPECTIVES
AUTHOR CONTRIBUTIONS
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call