Abstract

Climate change has resulted in a gradual increase in the surface temperature and significantly variable precipitation in different regions of the world. Linear regression of the groundwater levels in Korea between 2000 and 2010 revealed a decreasing trend with a slope of −29.2 mm/yr; −29.6 mm/yr in the wet season and −32.0 mm/yr in the dry season. Mann-Kendall and Sen’s tests were carried out using the groundwater levels and groundwater temperatures at 78 locations in South Korea between 2000 and 2010. The groundwater levels showed a trend in ~50% of the 78 groundwater level datasets, of which ~70% exhibited a decreasing trend at the 95% confidence level. This decreasing trend in the groundwater levels appears to be related to a change in the precipitation in South Korea because more abundant rainfall in the wet season each year does not contribute significantly to groundwater recharge, whereas less rainfall that occurs in the dry season can cause a decrease in the groundwater level. Linear regression of the groundwater temperatures revealed a slope of 0.1006 °C/yr between 2000 and 2010 with a gentler slope (0.08 °C/yr) in summer (June–September), showing that the increase in surface temperature has an impact on increasing the groundwater temperature. In this situation of climate change in Korea, the paradigm of groundwater management strategy needs to be altered properly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call