Abstract

Large-amplitude dynamic force microscopy based on measuring shifts of the resonance frequency of the force sensor has proved to be a powerful imaging tool. General expressions relating arbitrary interaction forces to resonance frequency shifts are derived using variational methods and Fourier expansion of the tip motion. For interactions with a range much shorter than the vibration amplitude, the frequency shift can be expressed in terms of a convolution product involving the interaction force and a weakly divergent kernel. The convolution can be inverted, thus enabling one to recover unequivocally interaction potentials and forces from measured frequency shift data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call