Abstract

This paper introduces fuzzy clustering algorithms that can partition objects taking into account simultaneously their relational descriptions given by multiple dissimilarity matrices. The aim is to obtain a collaborative role of the different dissimilarity matrices to get a final consensus partition. These matrices can be obtained using different sets of variables and dissimilarity functions. These algorithms are designed to furnish a partition and a prototype for each fuzzy cluster as well as to learn a relevance weight for each dissimilarity matrix by optimizing an adequacy criterion that measures the fit between the fuzzy clusters and their representatives. These relevance weights change at each algorithm iteration and can either be the same for all fuzzy clusters or different from one fuzzy cluster to another. Experiments with real-valued data sets from the UCI Machine Learning Repository as well as with interval-valued and histogram-valued data sets show the usefulness of the proposed fuzzy clustering algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.