Abstract
This paper introduces hard clustering algorithms that are able to partition objects taking into account simultaneously their relational descriptions given by multiple dissimilarity matrices. These matrices have been generated using different sets of variables and dissimilarity functions. These methods are designed to furnish a partition and a prototype for each cluster as well as to learn a relevance weight for each dissimilarity matrix by optimizing an adequacy criterion that measures the fitting between the clusters and their representatives. These relevance weights change at each algorithm iteration and can either be the same for all clusters or different from one cluster to another. Experiments with data sets (synthetic and from UCI machine learning repository) described by real-valued variables as well as with time trajectory data sets show the usefulness of the proposed algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.