Abstract
This paper introduces a relational fuzzy c-means clustering algorithm that is able to partition objects taking into account simultaneously several dissimilarity matrices. The aim is to obtain a collaborative role of the different dissimilarity matrices in order to obtain a final consensus partition. These matrices could have been obtained using different sets of variables and dissimilarity functions. This algorithm is designed to give a fuzzy partition and a prototype for each cluster as well as to learn a relevance weight for each dissimilarity matrix by optimizing an objective function. These relevance weights change at each algorithm's iteration and are different from one cluster to another. Experiments with datasets from UCI machine learning repository show the usefulness of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.