Abstract

Photoluminescence measurements of the 1.9 eV emission were carried out on high-purity silica glasses subjected to γ-ray irradiation. The time decay of the luminescence, when excited by the 4.8 eV band, indicates that the 4.8 eV absorption and the 1.9 eV luminescence are caused by two different defects, and that an energy transfer occurs between the two defects. Comparison with electron spin resonance observations shows that both the nonbridging oxygen hole center (responsible for the 1.9 eV luminescence) and another undetermined defect (responsible for the 4.8 eV absorption) must be present in the glass before the 1.9 eV luminescence band can be excited by 4.8 eV photons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.