Abstract
ABSTRACTEffectively solving the label switching problem is critical for both Bayesian and Frequentist mixture model analyses. In this article, a new relabeling method is proposed by extending a recently developed modal clustering algorithm. First, the posterior distribution is estimated by a kernel density from permuted MCMC or bootstrap samples of parameters. Second, a modal EM algorithm is used to find the m! symmetric modes of the KDE. Finally, samples that ascend to the same mode are assigned the same label. Simulations and real data applications demonstrate that the new method provides more accurate estimates than many existing relabeling methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have