Abstract

Recently, mixture distribution becomes more and more popular in many scientific fields. Statistical computation and analysis of mixture models, however, are extremely complex due to the large number of parameters involved. Both EM algorithms for likelihood inference and MCMC procedures for Bayesian analysis have various difficulties in dealing with mixtures with unknown number of components. In this paper, we propose a direct sampling approach to the computation of Bayesian finite mixture models with varying number of components. This approach requires only the knowledge of the density function up to a multiplicative constant. It is easy to implement, numerically efficient and very practical in real applications. A simulation study shows that it performs quite satisfactorily on relatively high dimensional distributions. A well-known genetic data set is used to demonstrate the simplicity of this method and its power for the computation of high dimensional Bayesian mixture models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.