Abstract

The emergence of Large Language Models (LLMs) has unlocked unprecedented potential for comprehending and generating human-like text, fueling advances in the finance domain – a tool that can shape investment strategies and market predictions. Nevertheless, challenges stemming from the necessity for extensive labeled data and the imperative for data privacy remain. The generation of high-quality synthetic data emerges as a promising avenue to circumvent these issues. In this paper, we introduce a novel methodology, named “Reinforcement Prompting”, to address these challenges. Our strategy employs a policy network as a Selector to generate prompts, and an LLM as an Executor to produce financial synthetic data. This synthetic data generation process preserves data privacy and mitigates the dependency on real-world labeled datasets. We validate the effectiveness of our approach through experimental evaluations. Our results indicate that models trained on synthetic data generated via our approach exhibit competitive performance when compared to those trained on actual financial data, thereby bridging the performance gap. This research provides a novel solution to the challenges of data privacy and labeled data scarcity in financial sentiment analysis, offering considerable advancement in the field of financial machine learning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.