Abstract
PurposeThe rapid rise of large language models (LLMs) has propelled them to the forefront of applications in natural language processing (NLP). This paper aims to present a comprehensive examination of the research landscape in LLMs, providing an overview of the prevailing themes and topics within this dynamic domain.Design/methodology/approachDrawing from an extensive corpus of 198 records published between 1996 to 2023 from the relevant academic database encompassing journal articles, books, book chapters, conference papers and selected working papers, this study delves deep into the multifaceted world of LLM research. In this study, the authors employed the BERTopic algorithm, a recent advancement in topic modeling, to conduct a comprehensive analysis of the data after it had been meticulously cleaned and preprocessed. BERTopic leverages the power of transformer-based language models like bidirectional encoder representations from transformers (BERT) to generate more meaningful and coherent topics. This approach facilitates the identification of hidden patterns within the data, enabling authors to uncover valuable insights that might otherwise have remained obscure. The analysis revealed four distinct clusters of topics in LLM research: “language and NLP”, “education and teaching”, “clinical and medical applications” and “speech and recognition techniques”. Each cluster embodies a unique aspect of LLM application and showcases the breadth of possibilities that LLM technology has to offer. In addition to presenting the research findings, this paper identifies key challenges and opportunities in the realm of LLMs. It underscores the necessity for further investigation in specific areas, including the paramount importance of addressing potential biases, transparency and explainability, data privacy and security, and responsible deployment of LLM technology.FindingsThe analysis revealed four distinct clusters of topics in LLM research: “language and NLP”, “education and teaching”, “clinical and medical applications” and “speech and recognition techniques”. Each cluster embodies a unique aspect of LLM application and showcases the breadth of possibilities that LLM technology has to offer. In addition to presenting the research findings, this paper identifies key challenges and opportunities in the realm of LLMs. It underscores the necessity for further investigation in specific areas, including the paramount importance of addressing potential biases, transparency and explainability, data privacy and security, and responsible deployment of LLM technology.Practical implicationsThis classification offers practical guidance for researchers, developers, educators, and policymakers to focus efforts and resources. The study underscores the importance of addressing challenges in LLMs, including potential biases, transparency, data privacy, and responsible deployment. Policymakers can utilize this information to shape regulations, while developers can tailor technology development based on the diverse applications identified. The findings also emphasize the need for interdisciplinary collaboration and highlight ethical considerations, providing a roadmap for navigating the complex landscape of LLM research and applications.Originality/valueThis study stands out as the first to examine the evolution of LLMs across such a long time frame and across such diversified disciplines. It provides a unique perspective on the key areas of LLM research, highlighting the breadth and depth of LLM’s evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Electronic Business & Digital Economics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.