Abstract

Causality assessment is vital in patient safety and pharmacovigilance (PSPV) for safety signal detection, adverse reaction management, and regulatory submission. Large language models (LLMs), especially those designed with transformer architecture, are revolutionizing various fields, including PSPV. While attempts to utilize Bidirectional Encoder Representations from Transformers (BERT)-like LLMs for causal inference in PSPV are underway, a detailed evaluation of "fit-for-purpose" BERT-like model selection to enhance causal inference performance within PSPV applications remains absent. This study conducts an in-depth exploration of BERT-like LLMs, including generic pre-trained BERT LLMs, domain-specific pre-trained LLMs, and domain-specific pre-trained LLMs with safety knowledge-specific fine-tuning, for causal inference in PSPV. Our investigation centers around (1) the influence of data complexity and model architecture, (2) the correlation between the BERT size and its impact, and (3) the role of domain-specific training and fine-tuning on three publicly accessible PSPV data sets. The findings suggest that (1) BERT-like LLMs deliver consistent predictive power across varied data complexity levels, (2) the predictive performance and causal inference results do not directly correspond to the BERT-like model size, and (3) domain-specific pre-trained LLMs, with or without safety knowledge-specific fine-tuning, surpass generic pre-trained BERT models in causal inference. The findings are valuable to guide the future application of LLMs in a broad range of application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.