Abstract

Wavelength-dependent power excursions in gain-controlled erbium doped fiber amplifiers (EDFA) is a challenging issue in optical networks. We investigate a launch channel power control method using reinforcement learning (RL) to mitigate the power excursions of EDFA systems. A machine learning engine is developed, trained and evaluated with four different policy-gradient RL algorithms that are compared according to two main criteria: achieved power excursion reduction and learning time. Different scenarios are considered with 12-, 24-, 40- active channels at fixed wavelengths and with variable number of active channels (between 12 and 64) assigned randomly at different wavelengths during RL process. We show 62% power excursion reduction in the 40-channel scenario and 28% in the variable scenario, which demonstrates the promising role of online RL approach for controlling power excursion in EDFA systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.